Source	Annual effective dose (micro-sievert)		
	External	Internal	Total
Cosmic rays	380		380
Cosmogenic radionuclides		12	12
Terrestial radionuclides			
Potassium-40	130	170	300
Uranium-238 series:			
²³⁸ U to ²³⁴ U to Thorium-230	140	1	
Radium-226		4	1400
Radon-222 to Polonium-214		1200	
Lead-210 to Polonium-210		50	
Thorium-232 series	190	80	270
Total (rounded)	840	1520	2400

Annual Dose from Natural Radiation Sources in the Environment (in areas of normal background radiation)

Long Term Committed Doses from Man-Made Sources

Source	Main radionuclides	Collective effective dose (man-Sv)
Atmospheric nuclear testing	Carbon-14 Caesium-137 Strontium-90 Zirconium-95	30 000 000
Chernobyl accident	Caesium-137 Caesium-134 Iodine-131	600 000
Nuclear power production	Carbon-14 Radon-222	400 000
Radioisotope production and use	Carbon-14	80 000
Nuclear weapons fabrication	Caesium-137 Ruthenium-106 Zirconium-95	60 000
Kyshtym accident	Cerium-144 Zirconium-95 Strontium-90	2 500
Satellite re-entries	Plutonium-238 Plutonium-239 Caesium-137	2 100
Windscale accident	Iodine-131 Polonium-210 Caesium-137	2 000
Other accidents	Caesium-137 Xenon-133 Cobalt-60 Iridium-192	300
Underground nuclear testing	Iodine-131	200

Most significant releases of radionuclides to the environment from human activities have been from atmospheric nuclear weapons testing. Next in importance is the Chernobyl accident, followed by long-term exposures from carbon-14 and radon-222 associated with nuclear power production. A large part (86%) of the collective dose from nuclear weapons testing is due to long-term exposure from carbon-14. Some perspective on these estimated doses from human activities can be gained by

http://www-old.iaea.org/worldatom/Periodicals/Bulletin/Bull381/dose.html

comparison with those from natural sources. An estimated 13,000,000 man-sievert due to natural sources (e.g., cosmic rays, potassium-40 in the body, and radon gas) is delivered each year to the world population (2400 micro-sievert x 5.4×10^9 persons).